
International Journal of Advanced Robotic Systems, Vol. 3, No. 1 (2006)
ISSN 1729-8806, pp. 023-030 023

CLARAty: Challenges and Steps Toward
Reusable Robotic Software

Issa A.D. Nesnas1; Reid Simmons2; Daniel Gaines1; Clayton Kunz3; Antonio Diaz-
Calderon1; Tara Estlin1; Richard Madison1; John Guineau1; Michael McHenry1;
I-Hsiang Shu1 & David Apfelbaum2
1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2Carnegie Mellon, Pittsburgh, PA, USA
3Ames Research Center, Mountain View, CA, USA
nesnas@jpl.nasa.gov

Abstract: We present in detail some of the challenges in developing reusable robotic software. We base that on
our experience in developing the CLARAty robotics software, which is a generic object-oriented framework used
for the integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation,
localization, planning and execution. CLARAty was adapted to a number of heterogeneous robots with different
mechanisms and hardware control architectures. In this paper, we also describe how we addressed some of these
challenges in the development of the CLARAty software.
Keywords: reusable robotic software, robotic framework, interoperable robotic software, robotic architecture,
object-oriented robotics

1. Introduction

Within the NASA robotics community, and possibly
within the research community, the majority of robotic
software is designed and built from scratch for each new
robot. To date, it may have been easier and more cost
effective to do so. However, as robotic software gets
more complicated and the time and effort to build reliable
software increases, it becomes more important to develop
reusable robotic software.
Over the past decade, NASA, through its Mars
Technology Program, developed a series of rovers to
mature new algorithms for planetary surface exploration.
The Jet Propulsion Laboratory (JPL) developed the Rocky
series, where its fourth generation culminated in the
successful Sojourner rover that landed on Mars in 1997.
Following that, JPL developed the FIDO series that was
the precursor to the Mars Exploration Rovers (MER),
Spirit and Opportunity, which landed in 2004.
NASA is interested in a reusable robotic framework to
reduce the cost of integrating and testing of new
capabilities that are developed at various institutions.
JPL started the research and development of reusable
robotic software back in 1996 with the development of the
Rocky 7 rover. The first generation reusable software was
developed using a component architecture based on
ControlShell (Volpe, 1997). The Rocky 8 software was,
then, adapted to this architecture. Due to limitations for
supporting additional platforms and to find commonality
in the development of robotic software among other

centers, we developed the Coupled Layer Architecture
for Robotic Autonomy (CLARAty, 2005). Started in 1999,
CLARAty is the outcome of collaboration among JPL,
Ames Research Center, and Carnegie Mellon (Volpe,
2001). In recent years, the University of Minnesota joined
the team to develop the estimation framework.
Given the heterogeneity of the NASA research rovers, it
was incumbent upon us to provide a framework that did
not require the redesign of existing hardware.
Additionally it was necessary to support legacy
algorithms with significant investments.
While much of the context of this work focuses on robotic
capabilities for planetary exploration, many of the
challenges and approaches are more generally applicable.

2. Related Work

The development of general software architectures
remains an active area of research in robotics (Coste-
Maniere, 2000). Much of the effort focuses on hierarchical
or layered architectures although there is disagreement
over how to decompose the hierarchy. In the past,
research focused on spatial or temporal hierarchies
(Albus, 1991) and behavioral hierarchies (Brooks, 1986).
More recently, the focus has been on functional
decomposition into different layers implemented with
data structures and algorithms specialized for particular
classes of functionality (Coste-Maniere, 2000). The most
popular of such approaches is the three-tiered
architecture (Bonasso, 1997) that features a declarative

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

024

planning layer, a procedural real-time behavioral layer,
and an intermediate executive layer that mediates
between the two. CLARAty decomposes robotic software
into two layers: a decision layer and a functional layer.
This approach is similar to the three-tiered architecture
except that the planning and execution layers are
combined in order to provide much tighter coordination
between generation and execution of plans. A second
difference between CLARAty and the three-tiered
architecture is that CLARAty’s robotic functionality can
be accessed at different levels of abstraction. A somewhat
different two-layered approach is CIRCA (Musliner,
1993) in which a planner/scheduler periodically creates
and downloads policies to be executed in hard real-time
by a reactive control system. Unlike the hierarchy used in
CLARAty’s Functional Layer, the reactive layer in CIRCA
has no internal structure, which makes it difficult to
implement complex behaviors.
Other efforts in the robotics community aim at
standardizing interfaces to robot hardware and among
control processes. Probably the most visible effort is the
Joint Architecture for Unmanned Systems (JAUS, 2005),
which aims at providing standardized message passing
interfaces for all of the military’s unmanned vehicles.
JAUS was initially developed by the Department of
Defense to ensure interoperability among a family of
Unmanned Ground Vehicles. Similar to CLARAty, JAUS
defines interfaces that are independent of the integrated
technology or the specific hardware platforms. While the
goals of JAUS are similar to those of CLARAty, the
approaches have significant differences. The JAUS
architecture uses a single-level message-set, while
CLARAty uses a multi-level abstraction model.
Another effort that provides abstractions for robotic
devices is Player/Stage (Gerkey, 2003). Player/Stage is a
device server that provides a flexible interface to a variety
of sensors and actuators. It is based on a client/server
model that uses socket-based communications. As a
result, information exchange between components
requires a serialization scheme, which can incur a
significant cost for resource-constrained robots.
Additionally, the current Player abstractions only address
a limited set of capabilities primarily geared towards
controlling commercial-off-the-shelf robots with simple
mobility mechanisms.
The Foundation for Intelligent Physical Agents (FIPA) is a
similar effort in the world of multi-agent systems. Unlike
CLARAty, both FIPA and Player/Stage focus on the form
of the interfaces and less on their content. They are also
aimed mainly at lower-level control, whereas CLARAty
tries to address a more complex functional hierarchy.
More recently, there have been several other related
efforts driven by similar needs. We will only list two: The
OROCOS project (OROCOS, 2005), which provides both
hard real-time services and class libraries for robotic
applications; and the OSCAR project (OSCAR, 2005),
which uses a similar object-oriented decomposition to

that of CLARAty for analysis, control, and simulation of
manipulators.

3. Challenges

Developing reusable robotic software is difficult
primarily due to the variability in robotic platforms.
Initially, one may assume that by concretely defining the
content and rate of information flow among the various
subsystems, one establishes a plug-and-play robotic
architecture. While defining the information and its flow
is necessary, it is not sufficient. Both the content and
pathways of the information flow change with various
device and system configurations, as well as with
different application programs. Hence, the flow of
information among sub-systems has to be both flexible
and efficient. To reuse software components across a
wide range of systems, it is also important that
components of a robotic system make no assumptions
about their operational platforms. Therefore, it is
necessary to share configuration, kinematic, and dynamic
information among components.
This section presents four major challenges that stem
from trying to: (i) control heterogeneous robots, (ii)
integrate and interoperate new capabilities, (iii) adjust
access levels, and (iv) implement a generic framework. In
the next section, we will present some of the approaches
that we used in CLARAty to overcome these challenges.
The list of challenges below is not intended to be
exhaustive, but rather characteristic of the key challenges
that we faced in standardizing the development of robotic
software.

1.1. Control Heterogeneous Robots
Because there are no standard robotic platforms, any
reusable framework must be sufficiently flexible to
address the variations in robots. Robotic systems present
challenges due to differences in their physical
capabilities, sensor configuration, and hardware control
architectures.
The first challenge comes from physical variability.
Consider the example of mobile rovers. Within this class
of rovers, there are wheeled rovers, legged rovers, and
rovers that are a hybrid of the two. Even within the
wheeled rover subclass, platforms have different mobility
mechanisms and wheel configurations. Some have four
wheels while others have six or eight wheels. Some have
all-wheels steering while others have only front-wheels
steering. Fig. 1 shows examples of various wheeled
robots.
Because of this physical variability, these robots possess
different capabilities. Fully-steerable (omni-directional)
rovers can move laterally (crab) while partially-steerable
(car-like) rovers have to use parallel parking maneuvers
to obtain the same result. For software to interoperate
across such platforms, it has to provide a generic interface
that handles these constraints.

Nesnas et.al. / CLARAty: Challenges and Steps Toward Reusable Robotic Software

025

When crafting a generalized interface, it is often the case
that neither the union of all possible capabilities nor the
intersection of such capabilities (least common
denominator) is satisfactory. The solution often lies
somewhere in between. In some cases, it is necessary to
split the interface into two distinct units and lose the
ability to interoperate between the two. This occurs when
it is necessary to highlight the differences between
platforms rather than their commonality. Trying to find
the single unified interface can sometimes lead to
undesirable over generalizations.
The second challenge comes from differences in sensor
configurations. One situation is where different sensors
produce similar information, but have different physical
constraints. For instance, consider sensors that generate
terrain data that is represented as three-dimensional
point clouds. To generate this data, one can either use a
lidar or a stereo camera pair. While both devices
eventually generate point clouds, these two devices
operate with different constraints and have different
qualities. A lidar requires a longer time to scan a scene
but less time to generate the depth information, while the
opposite is true for stereo. These behavioral differences
generate constraints on the operation of the vehicle.
Because of these variations in sensors, it is necessary for
algorithms to interface to an appropriate abstraction of
that sensor rather than to the actual sensor driver. If a
navigation algorithm that uses this data to find obstacles
was interfaced to stereo cameras as opposed to point
clouds, then it will not be possible to use this algorithm
on rovers that use a lidar sensor in lieu of stereo cameras.
Another situation is where similar data can be produced
by either a single sensor or a suite of sensors. For
instance, consider inertial motion sensing. Some robots
may use individual gyroscopes and accelerometers in a
unique configuration to measure the rover’s ego motions.
Others may use an integrated Inertial Measurement Unit.
In the first case, the hardware/software framework must

ensure the synchronized acquisition and processing of
these raw measurements, while in the second case, the
interface to the IMU provides such capability.
The third challenge comes from differences in hardware
control architectures. On one end of the spectrum, there
are robots that use a centralized processor to servo the
motors, generate coordination trajectories, and run the
application software. Such systems often have signals
mapped to memory registers in a centralized processor
making the development of software relatively easy.
However, they lack in modularity and are hard to extend.
On the other end of the spectrum, there are systems that
migrate much of their control to firmware in distributed
nodes in order to reduce the load and real-time
requirements on the central processor. Other systems
fall somewhere within this spectrum. While each
approach has its pros and cons, a general framework
must handle these differences in the hardware control
architecture, which has significant impact on information
flow.
In addition to these challenges that are found in both
custom designed robots as well as commercial-off-the-
shelf robots, components that comprise a robotic system
continue to change. Image acquisition subsystems
changed from analog cameras with centralized
framegrabbers to distributed digital cameras connected to
FireWire or USB buses. Despite this, reusable robotic
software must be sufficiently flexible to support such
variations or rapidly adapt the software to handle them.

1.2. Integrate and Interoperate New Capabilities
The integration of algorithms is perhaps one of the most
challenging elements in developing reusable robotic
software. The challenges stem from trying to integrate
algorithms that use different representations of
information and different architectures.
The first challenge is in the multiple ways to represent
similar information. Consider, for instance, general
transformations that connect one coordinate frame to
another. Two ways for representing the orientation
portion of these transformations are rotation matrices and
quaternions. These representations have different
characteristics in terms of efficiency and ease of
use/understanding. Conversion between them is both
inefficient and error prone. This is especially true when
dealing with their covariances. In addition,
transformations cannot be defined in isolation. They
require a context that defines the relationships between
frames and whether those frames represent fixed or
articulated connections. Without agreement on these
representations, algorithms will be required to deal with
these conversions in an ad hoc manner, leading to loosely
integrated and inefficient software.
The second challenge stems from architectural
mismatches. One issue is with components that integrate
orthogonal functionality into a single modular unit. This
introduces artificial coupling of functionalities driven by

Pt Cloud

Acquire ImageGoto Target 1

Explore Site

Go to Target 3 Deploy
Instrument

Acquire &
Analyze

Navigator
Morphin

Rover

Target Tracker
Falcon

Locomotor
R8 Model Pose Estimator

Stereovision

Motor
IMU

Camera
R8 Motor

ISIS
1394 Cam

SAPP
JPL V

Functional
Layer

Decision
Layer

Declarative Activity
Class Abstraction
Swappable Algorithm o
Robot Adaptation

Rocky 8

ATRV Jr. Rocky 7

ROAMS

Pt Cloud

Acquire ImageGoto Target 1

Explore Site

Go to Target 3 Deploy
Instrument

Acquire &
Analyze

Navigator
Morphin

Rover

Target Tracker
Falcon

Locomotor
R8 Model Pose Estimator

Stereovision

Motor
IMU

Camera
R8 Motor

ISIS
1394 Cam

SAPP
JPL V

Functional
Layer

Decision
Layer

Declarative Activity
Class Abstraction
Swappable Algorithm o
Robot Adaptation

Rocky 8

ATRV Jr. Rocky 7

ROAMS

Fig. 1. The CLARAty Architecture

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

026

a specific implementation. While such coupling may
have some locally optimal performance, this often comes
on the expense of global optimality.
Another issue is with limitations of architectural
frameworks. Consider, for instance, a framework that
does not time-stamp measurements collected from
various devices. Now consider an algorithm that collects
data asynchronously and requires time-stamped
measurements. If the underlying framework does not
support time-stamped measurements, we have an
architectural mismatch. Similar situations occur when an
algorithm requires high bandwidth information that may
not be available for certain platforms. Diagnostic and
health monitoring software often requires information
about all aspects of the system at all times, which in many
cases, may be limited or not possible.
The interoperation of algorithms necessitates components
that produce a similar output even though they may use
different underlying technologies. The challenge is to
provide a framework in which a developer can work on
an individual technology component and see how it
interacts with a complete robotic system, without having
to understand the entire system.

1.3. Adjust Access and Control Levels
In any complex system, it is important to be able to access
and independently test each subsystem. Characterizing
the performance of individual subsystems requires a
modular architecture that provides access at various
levels of the architecture. Also, interfacing with other
systems requires adaptations at different levels of
granularity. This section covers both back-end and front-
end access. Back-end access is what gets adapted to
hardware or simulation. Front-end access is what a client
application uses to control the software.
With respect to back-end access, consider the FIDO rover,
which uses a central processor for the control and
coordination of its motors. The software framework must
provide functionality for the servo control and trajectory
generation for all motors. In this case, the interface to
hardware occurs at the low-level of digital and analog
I/O. However, in systems such as Rocky 8 or Rocky 7,
which use micro-controllers for servo control and
trajectory generation, the interface to hardware occurs at
a higher level through communication with motor
controllers.
Providing multi-level access also benefits interfacing the
control software with simulation. Some simulations may
not have the level of fidelity to simulate real hardware.
In such cases, a higher-level interface would be necessary
and appropriate. There are other cases where a higher-
level interface is desirable to explore a larger set of
scenarios without having to go through smaller steps of
motion simulation. For example, an interface between
the control and simulation software at the locomotion
level bypasses the lower level control and simulation of
actual wheel motions.

With respect to front-end access, client applications may
need to access the system at different levels at different
times. For example, if the robotic arm has on-board
autonomy for path planning, then one uses the high-level
interface to define goal locations. However, in other
situations where the arm has to be tele-operated, one
needs to interface to lower-level motor velocities.

1.4. Implement a Generic Software Framework
Another major challenge stems from the inherent
complexity and multi-disciplinary nature of the robotics
domain. Developing robotic capabilities for real systems
is quite hard, but doing so with an overarching objective
of supporting new platforms and algorithms that are not
known a priori is a real challenge. This process requires
developers with both a depth of knowledge in robotics
and breadth of experience and skills in the field.
Developing a cross-cutting generic framework requires
continuous refactoring of common elements across
multiple disciplines. There are shared capabilities among
the vision, mobility, and manipulation domains. They all
require coordinate transformations, math libraries, and
information about the mechanisms they control.
Similarly, the science analysis and vision domains share
abundant image processing infrastructure.
To keep the complexity of systems manageable, and to
simplify the testing and maintenance of the various
packages, it is important to reduce code duplication as
much as possible across domains. This raises the
question of when it is appropriate to encapsulate an
algorithm vs. to refactor it using a common software
framework. The decision is often influenced by non-
technical factors involving the nature of the technology,
the expertise necessary to re-implement the algorithm,
the return of investment, and the long-term plan to
support the algorithm as part of a common framework.
Because any reusable robotic system is doomed to
become enormous, it is strongly desirable to make the
code repository complementary rather than duplicative.
To support the integration of multiple algorithms and to
support the adaptations of the framework to various
robot platforms, it is necessary to have development tools
and processes that support modularity. Without the
ability to check out and build parts of the generic robotic
repository, it becomes too unwieldy to use. The
repository tools will eventually need to be integrated
with the build system in order to dynamically check-out
and configure the system using different
implementations of a given functionality. For instance,
consider rover navigation that can use one of three
algorithms for estimating the rover pose: a wheel
odometry pose estimator, a visual odometry pose
estimator, or multi-sensor pose estimator. Depending on
the desired configuration, the software check-out and
build will be different for each of the three configurations.
Automated tools are necessary to manage this process.

Nesnas et.al. / CLARAty: Challenges and Steps Toward Reusable Robotic Software

027

In addition, there are many challenges in software
engineering that any generic framework for robotics will
have to address. No matter what the approach is used in
the design, issues related to the flexibility, scalability of
the approach, simplicity but not simplistic, extendibility,
and long-term maintainability can only be judged over
time. The challenge is to find the delicate balance among
the above elements.

1.5. Address other Challenges
Numerous other challenges remain in the development of
a unified and reusable robotic framework, but it will
suffice, here, to point to a few more. Some of these
challenges include: dealing with system states especially
ones that reside in hardware controllers where there is a
cost associated for retrieving state information; logging of
information at all levels; dealing with measurement
uncertainties; dealing with differences in data flow
models among platforms; dealing with multiple clients;
supporting real-time operations; addressing abstract time
for real and simulated platforms; and addressing
distributed computation. There are several additional
social factors such as getting user buy-in, managing
contributions from a distributed developer base,
capturing feedback from the user community, and
providing documentation, training and support.

4. CLARAty

CLARAty is a reusable robotic software framework to
enable the integration of new capabilities onto various
platforms. We designed CLARAty to address the above
challenges in software interoperability for rovers and
manipulation platforms. CLARAty defines standard
interfaces at different levels of abstractions for various
devices and robotic algorithms. It also provides
candidate implementations for each algorithm as a
starting point, though many algorithms were contributed
through a competed program by robotic developers at
universities and NASA centers. In addition to interfaces
and algorithms, CLARAty also provides adaptations of
its device abstractions to custom and standard hardware
and robotic platforms. The CLARAty code base is
designed with a modular structure to enable users to
check out and work with only the parts of the software
that meets their needs. The majority of the software is
developed using object-oriented C++.
In the following subsections, we will address the
aforementioned challenges in an order that facilitates the
description of some elements of CLARAty.

1.6. Approach
Because it is not realistic to expect a standard robotic
platform any time soon, it becomes necessary to develop
a software framework that would deal with the
variability outlined in the previous section. To do so, we
analyzed in detail several existing robotic architectures

and legacy implementations of several NASA robots,
including Rocky 7, Rocky 8, FIDO, K9 and Dexter. We
also investigated the interactions between declarative
model-based reasoning and these architectures.
To meet the flexibility requirements for integrating
different technologies, we developed CLARAty as a two-
layer architecture with a top decision layer and a bottom
functional layer. The decision layer uses a declarative
model-based approach to define activities. The input to
this layer does not a priori specify the order of execution
of activities. Rather, activities are described with explicit
system and mission constraints and a search engine
orders these activities at runtime to provide a feasible
plan. The plan is then executed using an engine that is
tightly integrated with the planner. The functional layer,
on the other hand, uses an object-oriented procedural
approach where the sequence of execution is defined a
priori and bounded by the software implementation.
Hence, the system does not have to search for a feasible
plan before execution.
We architected the functional layer to use a multi-level
abstraction model with polymorphic interfaces to address
the variability of robotic systems. At the mission level, a
robot can plan and execute a number of activities in
different order. At this level, a declarative model
dominates. However, the choices for actions become
limited and time-constrained as you go down the
hierarchy. At these levels, a procedural model
dominates. Most robotic systems use both models (Coste-
Maniere, 2000). Where one layer ends and another begins
remains an active area of research. Current practice has
drawn the line between the two models at a high level,
however, in CLARAty, the decision layer can access the
functional layer at different levels.
To address challenges in software implementation, we
leverage many well-known techniques developed by the
software community, including object-oriented
architecture, design patterns, generic programming and
component-based architecture (Gamma, 95) (Garlan,
1996). Our experience shows that an object-oriented
framework provides the necessary levels of abstraction to
deal with the variability among platforms and
algorithms. It also provides extendible interfaces, strong
type checking, polymorphic behavior, and data
encapsulation, which are all necessary elements for the
robust development of complex robotic systems. Most
component interactions use method calls on class
abstractions with only a few that use the more elaborate
component-connector style interface. The latter is
primarily used when distributing computation across
nodes is necessary (e.g. the interface between the decision
and functional layers), which requires serialization and
de-serialization of commands and information.
Component-based architectures such as MDS (Dvorak,
1999) and ControlShell (Pardo-Castellote, 1998) require
additional frameworks for the explicit ordering and have
coarser granularity for parallel execution of activities.

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

028

CLARAty, on the other hand uses the multi-threading
model of its operating system to provide finer resolution
on scheduling and pre-emption of activities. That requires
though a multi-thread safe implementation of these
algorithms.

1.7. A Multi-level Abstraction Architecture
The system is designed with abstractions at various levels
from the low-level device abstractions to high-level
functional abstractions. At the lowest levels are device
abstractions that get adapted to various platforms. These
include analog and digital I/O, motor, IMU, camera, and
spectrometer abstractions. At higher levels are
abstractions that integrate various lower-level
abstractions. Examples of these abstractions include
locomotor, manipulator, pose estimator, navigator, and
rover. Higher-level abstractions provide interfaces for
different robotic algorithms. A more detailed description
of the architecture and class abstractions can be found in
Nesnas (Nesnas, 2003).
In addressing architecture mismatches, there is often a
fundamental tension between the desire to separate
abstractions for conceptually distinct parts of the system
and the reality of the coupling between hardware and
software components. Consider, for instance, a camera
that is powered by a power distribution subsystem. The
camera device and the power subsystem have distinct
functionality, and we would like to keep the
implementation of their interfaces independent and
modular. However, at some point, a camera will have to
be switched on/off. So the question arises: should the
user ask the power system to turn the camera on, or
should the user ask the camera to switch itself on? In the
first case, the user has to know about the power system,
and in the second case, the camera has to know about the
power system. Neither case is ideal. For someone who
cares only about images, the power system is a nuisance;
for system designer, the dependency between the camera
and the power system leads to a break in modularity. We
address this type of problem by using light-weight
function objects (functors). An abstract power functor
provides an interface to turn a device on/off and to
measure its voltage and current draw. The power
distribution system then creates these objects on request
and gives them to devices as they are built. Some part of
the initialization code, therefore, needs to know the
coupling between the power distribution subsystem and
the camera. However, using this approach, cameras are
not aware of the underlying implementation of power
switching, and users can now ask the camera directly to
turn itself on or to report on its current draw.
To operate the software on real and simulated platforms
and to support “what if” planning scenarios, we separate
mechanism models from their controls. To address the
variability of different mechanisms, we use flexible
abstractions that capture the model characteristics for use
by various applications. This modeling captures

geometric information in order to support collision
prediction and detection for safe robot operations.
Typical robot applications require forward and inverse
kinematics algorithms. We will provide generic solvers
for the kinematics and inverse dynamics for the generic
model framework. Because some applications require
high-speed robot motions with tight control loops, we
support the overriding of the generic solvers with more
efficient mechanism-specific implementations. We define
a set of abstractions to also describe the interactions and
contacts of the mechanism with its environment. For
more details on the mechanism modeling in CLARAty,
please refer to Diaz-Calderon (Diaz-Calderon, 2005).
One of the main features of CLARAty is its ability to
interoperate robotic algorithms. There are many
challenges that make this difficult, including the problem
of making algorithms themselves generic in the first
place. At first, it may seem easy to provide a common
API to a collection of, say, stereo algorithms: the primary
interface takes a pair of images with their corresponding
camera models and produces a disparity map. This
seemingly abstract interface fails with the first step of
most stereo algorithms, when images are rectified to
remove lens distortion and ensure epipolar alignment.
This is because legacy implementations of stereo
algorithms typically perform rectification internally, and
the algorithm for producing the rectification depends on
the underlying implementation of the camera model.
There are several possibilities to make the stereo vision
API truly generic: (i) pass in only rectified and aligned
images to the stereo algorithm without needing to pass in
camera models, or (ii) pass in images with their
corresponding camera models, however, have the camera
models implement rectification (both to remove lens
distortion and epipolar align images). Each of these
implementations has its own drawbacks; the usual
tradeoff is between simplicity and performance. Epipolar
alignment is primarily useful for stereo, so making it a
requirement on the camera model class is somewhat
awkward and a burden to implementers of new models,
such as push broom camera models. On the other hand,
requiring the user to rectify images before handing them
to a stereo algorithm is also something of a burden,
particularly if the user must take extra steps to keep the
rectification efficient, for example when batch processing
several image pairs that all have the same epipolar
relationship. In this case, we prefer the solution that
keeps the interface generic. This means that more work is
required when integrating legacy algorithms into the
system, and it shows that the most abstract interface is
not necessarily going to be the simplest. However, with a
truly abstract interface to stereo algorithms, a user will be
able to mix and match camera models and stereo
implementations to find the best combination of
components for a particular application. This flexibility
more than makes up for the additional complexity that
the user must address.

Nesnas et.al. / CLARAty: Challenges and Steps Toward Reusable Robotic Software

029

Autonomous navigation, which provides obstacle
avoidance capabilities for mobile robots, uses many of the
lower level capabilities, such as vehicle locomotor, point
cloud sources, local and global path planners, and pose
estimators. First, a generic interface was designed that
allows higher levels to invoke the navigation
functionality in the same way, regardless of what
algorithm is actually being used or which rover is being
controlled. This “navigation” interface basically indicates
goal points (or, more generally, goal regions) that the
robot must reach. Navigation algorithms are then
adapted to this framework to accept input from the
CLARAty point cloud source and command the rover
using the vehicle locomotor, a generic interface to a wide
range of supported rovers. More fundamentally,
however, navigation algorithms that were adapted to
CLARAty all had to be extended to plan generically for
different rovers. For instance, the algorithms all need to
know the maximum steering angles to determine how
tight turns can be made and the size of the rover to
determine what distance between obstacles constitutes a
safe passage. This was accomplished with the
mechanism model described above. In addition, to
support the Morphin algorithm (Urmson, 2003), the
mechanism model class can perform a kinematic
simulation of the rover. This enables the algorithm to
integrate costs along the rover’s path without having to
know explicitly how the rover moves. In current work,
Carnegie Mellon is developing navigation algorithms that
take vehicle dynamics into account, and we expect to
extend the mechanism model to support dynamical
simulation, as well.
On the various access and integration levels, algorithms
can be integrated into CLARAty in different ways. Some
algorithms can be encapsulated behind the generic
CLARAty APIs, while others can be refactored to
leverage CLARAty’s data structures and generic classes
that we believe may be useful for many different
algorithms. Refactoring algorithms enables more efficient
and consistent representation of the internals of an
algorithm. For instance, the GESTALT (Goldberg, 2002)
algorithm that was flown on MER rovers was
encapsulated into CLARAty while the Morphin
algorithm was refactored. Currently, we are refactoring
the Drivemaps algorithm (Huntsberger, 2001). The goal
is to determine how much reuse can be made from
algorithms that have fundamentally different approaches
to the same problem. While complete reuse of the classes
is unlikely, we have found that splitting the algorithms
into terrain analysis and action selection components
seems to be common amongst the algorithms that we
have investigated to date.

1.8. Empirical Results
We have developed autonomous end-to-end rover
capabilities such as autonomously placing an instrument
on a target selected from 10 meters away. Such capability

integrates visual tracking of the designated target using
multiple rover mounted cameras while navigating to the
target location; assessing the safety of the target region;
properly positioning the rover relative to the target for
instrument deployment; deploying and placing the
robotic arm that carries the science instrument on the
target; acquiring the scientific data and simulating a
downlink to Earth.
We have deployed and extensively tested CLARAty on
half a dozen robotic platforms. Fig. 1 shows a subset of
these platforms, which include the custom Rocky 8,
FIDO, Rocky 7, and K9 rovers, as well as the ATRV Jr.
commercial platform. These platforms have different
mobility mechanisms and wheel configurations as well as
different sensor suites, manipulators, end effectors,
processors, motion control architectures and operating
systems. In addition to these real-platform adaptations,
we have also adapted CLARAty to operate with the high-
fidelity ROAMS rover and terrain simulator (Jain, 2004).
A large number of complex algorithms have been
integrated into CLARAty and deployed on the above
platforms. For autonomous navigation, we have
integrated the GESTALT algorithm that is driving the
MER rovers today on the Martian surface, the Morphin
algorithm that GESTALT was based on, and the
Drivemaps algorithm. In each case, the original
implementation had to be modified and generalized in
relatively minor ways to fit the CLARAty framework. For
rover pose estimation, we have adapted five algorithms
including the Sojourner algorithm (Mishkin, 1998), the
MER pose estimator algorithm, and an algorithm that
integrates all sensing modalities (Roumeliotis, 2002).
These algorithms all require data from different sensors,
including wheel encoders, gyroscopes, IMUs, sun sensors
and stereo cameras. We also integrated three stereo
vision implementations and several algorithms for visual
tracking, visual odometry, sensor-based manipulation,
path planning, science analyses, activity planning, and
scheduling. Many of these have been tested on multiple
platforms and as part of end-to-end capabilities.

5. Conclusion

Developing reusable robotic software presents many
challenges. These challenges stem from variability in
robotic mechanisms, sensor configurations, and hardware
control architectures. They also stem from integrating
new capabilities that use different representations of
information or that have architectural mismatches with
the reusable framework. We found that multi-level
abstraction models, object-oriented methodologies and
design patterns go a long way to address the extensive
variability that is encountered in today’s robotic
platforms. We have learned that over-generalizing
interfaces makes them harder to understand and use.
There is a delicate balance between flexibility and
simplicity. Performance cannot be compromised for the

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

030

sake of flexibility and the least common denominator
solution is often unacceptable. It is necessary to have
flexible development environments, tools, and regression
tests. Reusable software products and processes have to
be well documented. It would be highly desirable to
standardize robotic hardware but that may not be feasible
today.

6. Acknowledgments

We would thank NASA’s Mars Technology Program for
their vision and support. We would also like to
acknowledge the contributions of former principal
investigator Richard Volpe, former lead engineers Anne
Wright and Max Bajracharya, and current and former
developers: Wonsoo Kim, Hari Nayar, Stergios
Roumeliotis, Babak Sapir, Chris Urmson, Richard Petras,
Dan Clouse, Randy Sargent, Ron Garrett, Marsette Vona,
Caroline Chouinard, and Darren Mutz. The work
described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of
Technology, NASA Ames Research Center, and Carnegie
Mellon under a contract to the National Aeronautics and
Space Administration.

7. References

Albus, J. (1991). Outline for a Theory of Intelligence, IEEE

Transactions on Systems, Man and Cybernetics, 21:3,
pp. 473-509, 1991.

Bonasso, R.P.; et.al. (1997). Experiences with an
Architecture for Intelligent, Reactive Agents, Journal
of Experimental and Theoretical Artificial Intelligence,
9:2, 1997.

Brooks, R. (1986). A Robust Layered Control System for a
Mobile Robot. IEEE Journal of Robotics and
Automation, RA-2:1, 1986.

Coste-Maniere & E.; Simmons, R. (2000). Architecture, the
Backbone of Robotic Systems. IEEE Conference on
Robotics and Automation, San Francisco CA.

CLARAty (2005), http://claraty.jpl.nasa.gov
Diaz-Calderon, A.; Nesnas, I.; Kim, W.S.; & Nayar, H.

(2005). Towards a Unified Representation of
Mechanisms for Robotic Control Software. Int’l
Journal of Advanced Robotic Systems.

Dvorak, D; Rasmussen, R.; Reeves, G.; & Sacks, A. (1999).
Software architecture themes in JPL's Mission Data
System, Proc. of the AIAA Guidance, Navigation, and
Control Conference, Portland, OR.

FIPA (2005). Foundation for Intelligent Physical Agents,
http://www.fipa.org/.

Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. (1995)
Design Patterns, Elements of Reusable Object-
Oriented Software, Addison-Wesley Professional
Computing Series.

Garlan, D. & Shaw, M. (1996). Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall.

Gerkey, B.; Vaughan, B.; & Howard, A. (2003). The
Player/Stage Project: Tools for Multi-Robot and
Distributed Sensor Systems, International Conference
on Advanced Robotics, pages 317-323, Portugal.

Goldberg, S.; Maimone, M.; & Matthies, L. (2002). Stereo
Vision and Rover Navigation Software for Planetary
Exploration, Proceedings of the IEEE Aerospace
Conference, pp 2025-2036.

Huntsberger, T.; et.al. (2002). Rover Autonomy for Long
Range Navigation and Science Data Acquisition on
Planetary Surfaces, IEEE Conference on Robotics and
Automation, Washington, DC, pp. 3161-3168

Jain, A.; et.al. (2004). Recent Developments in the ROAMS
Planetary Rover Simulation Environment. IEEE
Aerospace Conference, Montana, 2004.

JAUS (2005). Joint Architecture for Unmanned Systems
Ref. Architecture, Ver. 3.0, http://www. jauswg.org/.

Kapoor, C; & Tesar, D. (1998). A Reusable Operational
Software Architecture for Advanced Robotics, CSIM-
IFToMM Symposium on theory and Practice of Robots
and Manipulators, Paris, France.

Mishkin, A.; Morrison, J.; Nguyen, T., Stone H.; Cooper,
B.; & Wilcox, B. (1998) Experiences with Operations
and Autonomy of the Mars Pathfinder Microrover,
IEEE Aerospace Conference, Colorado.

Musliner, D.; Durfee, E. & Shin, K. (1993) IRCA: A
Cooperative Intelligent Real-Time Control
Architecture. IEEE Transactions on Systems, Man and
Cybernetics, 23:6, 1993.

Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R.,
Estlin, T., Kim, W.S. (2003) CLARAty: An Architecture
for Reusable Robotic Software, SPIE Aerosense
Conference, Florida.

OROCOS (2005) http://www.orocos.org/
Pardo-Castellote, G.; Schneider, S.; Chen, V.; and Wang,

H. (1998) ControlShell: A software architecture for
complex electromechanical systems, Int’l Journal of
Robotics Research, 17(4).

Roumeliostis, S.; Johnson, A.; & Montgomery, J. (2002)
Augmenting Inertial Navigation with Image-Based
Motion Estimation. IEEE International Conference on
Robotics and Automation, Washington D.C.

Simmons, R.; & Krotkov, E. (1995). Experience with Rover
Navigation for Lunar-Like Terrains, Conference on
Intelligent Robots and Systems.

Volpe, R.; Nesnas, I.A.; Estlin, T.; Mutz, D.; Petras, R.; &
Das, H. (2001) The CLARAty Architecture for Robotic
Autonomy. IEEE Aerospace Conference, Montana,

Volpe, R.; Balaram, J.; Ohm, T.; & Ivlev, R. (1997). Rocky
7: A Next Generation Mars Rover Prototype. Journal
of Advanced Robotics, 11(4).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

